AWS AI Practitioner Training Course Training 課程
  Facebook: AWS AI Practitioner Training Course Training 課程
 
AWS AI Practitioner Training Course Training 課程
AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程  
AWS AI Practitioner Training Course Training 課程 AWS AI Practitioner Training Course Training 課程

想定期知道最新課程及優惠嗎?
免費訂閱本中心的課程通訊!

課堂錄影隨時睇 10 大優點之低至 9 折:回饋社會及協助全港市民進修增值,本中心現正推出低至 9 折優惠!

AWS Certified AI Practitioner 國際認可證書課程
課程簡稱:AWS AI Practitioner Training Course

  • 課程時間
  • 課程簡介
  • 考試須知
  • 課程內容

傳統服務:課程上堂時間表 (地點:旺角   總費用:$3,980)
學員使用 WhatsApp、電話或本網頁報名,待本中心確認已為學員留位後,即可使用 轉數快 繳付學費,過程簡便!

超震撼: 凡於 2025年 1月 17日 (五) 或之前報讀本課程,
原價 $4,975,現只需
$3,980!

編號 日期 (dd/mm) 星期 時間 費用 導師  
GS0313CM  12/03 - 31/03
12/3, 17/3, 19/3, 24/3, 26/3, 31/3
 下載詳細上課日期
一、三 7:00pm - 10:00pm $3,980 Franco 按此報名:AWS AI Practitioner Training Course Training 課程
* 各政府部門可使用 P Card 付款  
如使用 P Card 繳付考試費,考試費需另加 2.5% 行政費  

*** 質素保證: 免費於任何地點試睇首 1 小時課堂錄影,從而可預先了解導師及教材的質素,才報讀課程來上堂。***
請致電與本中心職員預約。 查看各地點電話
旺角 2332-6544
觀塘 3563-8425
北角 3580-1893
沙田 2151-9360
屯門 3523-1560

免費補堂: 學員可於任何地點補看課堂錄影,從而可銜接往後的課堂!
免費重讀: 學員可於課程結束後三個月內於任何地點不限次數地重看課堂錄影,從而可反覆重溫整個課程!
課時: 18 小時
課堂導師: Franco (任教課程清單)


地區 地址 電話 教育局註冊編號
旺角 九龍旺角亞皆老街 109 號,皆旺商業大廈 18 樓 1802 - 1807 室 2332-6544 533459
觀塘 九龍觀塘成業街 7 號寧晉中心 12 樓 G2 室 3563-8425 588571
北角 香港北角馬寶道 41-47 號華寶商業大廈 3 樓 01-02 號舖 3580-1893 591262
沙田 新界沙田石門安群街 3 號京瑞廣場 1 期 10 樓 M 室 2151-9360 604488
屯門 新界屯門屯喜路 2 號屯門柏麗廣場 17 樓 1708 室 3523-1560 592552
注意! 客戶必須查問報讀學校的教育局註冊編號,以確認該校為註冊學校,以免蒙受不必要的損失!


AWS Certified AI Practitioner 課程專為希望深入了解人工智能 (AI)、機器學習 (ML) 及生成式 AI 技術的朋友而設的。課程不僅涵蓋了這些技術的基本概念,還深入探討與 AWS 相關的服務和工具,讓學員能夠靈活應用於實際場景中。課程內容包括:

  • 基礎知識:全面介紹 AI、ML 和生成式 AI 的基本概念、方法及策略,幫助學員建立扎實的理論基礎。
  • 實際應用:學習如何在組織內部提出相關問題,並了解 AI/ML 和生成式 AI 技術的適用情境,從而更有效地解決實際業務挑戰。
  • 技術選擇:指導學員如何根據具體用例選擇合適的 AI/ML 技術,提升決策和解決問題的能力。
  • 責任使用:強調負責任地使用 AI 和 ML 技術的重要性,讓學員在應用這些技術時具備道德意識。
本中心的 AWS Certified AI Practitioner 國際認可證書課程由 Franco 籌備多時,精心編排。由上堂、溫習、考試研習、做試題至最後考試,均為你度身訂造,作出有系統的編排。務求真正教識你,又令你考試及格。

課程名稱: AWS Certified AI Practitioner 國際認可證書課程
- 簡稱:AWS AI Practitioner Training Course
課程時數: 合共 18 小時 (共 6 堂)
適合人士: 對雲端 AI 技術有興趣的人士
授課語言: 以廣東話為主,輔以英語
課程筆記: 本中心導師親自編寫英文為主筆記,而部份英文字附有中文對照。
提供模擬考試題目: 本中心為學員提供約 100條模擬考試題目,每條考試題目均附有標準答案。

只要你於下列科目取得合格成績,便可獲 AWS 頒發 AWS Certified Cloud Practitioner 國際認可證書:

考試編號 考試名稱
AIF-C01 AWS Certified AI Practitioner

本中心為 PSI 指定的 AWS Certified Solutions Architect - Associate 考試試場,導師會在課堂上講解考試程序。考試費為 USD $100。




Domain 1: Fundamentals of AI and ML

  • Explain basic AI concepts and terminologies.
    • Define basic AI terms (for example, AI, ML, deep learning, neural networks, computer vision, natural language processing [NLP], model, algorithm, training and inferencing, bias, fairness, fit, large language model [LLM]).
    • Describe the similarities and differences between AI, ML, and deep learning.
    • Describe various types of inferencing (for example, batch, real-time).
    • Describe the different types of data in AI models (for example, labeled and unlabeled, tabular, time-series, image, text, structured and unstructured).
    • Describe supervised learning, unsupervised learning, and reinforcement learning.

  • Identify practical use cases for AI.
    • Recognize applications where AI/ML can provide value (for example, assist human decision making, solution scalability, automation).
    • Determine when AI/ML solutions are not appropriate (for example, cost-benefit analyses, situations when a specific outcome is needed instead of a prediction).
    • Select the appropriate ML techniques for specific use cases (for example, regression, classification, clustering).
    • Identify examples of real-world AI applications (for example, computer vision, NLP, speech recognition, recommendation systems, fraud detection, forecasting).
    • Explain the capabilities of AWS managed AI/ML services (for example, SageMaker, Amazon Transcribe, Amazon Translate, Amazon Comprehend, Amazon Lex, Amazon Polly

  • Describe the ML development lifecycle
    • Describe components of an ML pipeline (for example, data collection, exploratory data analysis [EDA], data pre-processing, feature engineering, model training, hyperparameter tuning, evaluation, deployment, monitoring).
    • Understand sources of ML models (for example, open source pre-trained models, training custom models).
    • Describe methods to use a model in production (for example, managed API service, self-hosted API).

  • Identify relevant AWS services and features for each stage of an ML pipeline (for example, SageMaker, Amazon SageMaker Data Wrangler, Amazon SageMaker Feature Store, Amazon SageMaker Model Monitor).
    • Understand fundamental concepts of ML operations (MLOps) (for example, experimentation, repeatable processes, scalable systems, managing technical debt, achieving production readiness, model monitoring, model re-training).
    • Understand model performance metrics (for example, accuracy, Area Under the ROC Curve [AUC], F1 score) and business metrics (for example, cost per user, development costs, customer feedback, return on investment [ROI]) to evaluate ML models.

Domain 2: Fundamentals of Generative AI

  • Explain the basic concepts of generative AI.
    • Understand foundational generative AI concepts (for example, tokens, chunking, embeddings, vectors, prompt engineering, transformer-based LLMs, foundation models, multi-modal models, diffusion models).
    • Identify potential use cases for generative AI models (for example, image, video, and audio generation; summarization; chatbots; translation; code generation; customer service agents; search; recommendation engines).
    • Describe the foundation model lifecycle (for example, data selection, model selection, pre-training, fine-tuning, evaluation, deployment, feedback).

  • Understand the capabilities and limitations of generative AI for solving business problems.
    • Describe the advantages of generative AI (for example, adaptability, responsiveness, simplicity).
    • Identify disadvantages of generative AI solutions (for example, hallucinations, interpretability, inaccuracy, nondeterminism).
    • Understand various factors to select appropriate generative AI models (for example, model types, performance requirements, capabilities, constraints, compliance).
    • Determine business value and metrics for generative AI applications (for example, cross-domain performance, efficiency, conversion rate, average revenue per user, accuracy, customer lifetime value).

  • Describe AWS infrastructure and technologies for building generative AI applications.
    • Identify AWS services and features to develop generative AI applications (for example, Amazon SageMaker JumpStart; Amazon Bedrock; PartyRock, an Amazon Bedrock Playground; Amazon Q).
    • Describe the advantages of using AWS generative AI services to build applications (for example, accessibility, lower barrier to entry, efficiency, cost-effectiveness, speed to market, ability to meet business objectives).
    • Understand the benefits of AWS infrastructure for generative AI applications (for example, security, compliance, responsibility, safety).
    • Understand cost tradeoffs of AWS generative AI services (for example, responsiveness, availability, redundancy, performance, regional coverage, token-based pricing, provision throughput, custom models).

Domain 3: Applications of Foundation Models

  • Describe design considerations for applications that use foundation models.
    • Identify selection criteria to choose pre-trained models (for example, cost, modality, latency, multi-lingual, model size, model complexity, customization, input/output length).
    • Understand the effect of inference parameters on model responses (for example, temperature, input/output length).
    • Define Retrieval Augmented Generation (RAG) and describe its business applications (for example, Amazon Bedrock, knowledge base).
    • Identify AWS services that help store embeddings within vector databases (for example, Amazon OpenSearch Service, Amazon Aurora, Amazon Neptune, Amazon DocumentDB [with MongoDB compatibility], Amazon RDS for PostgreSQL).
    • Explain the cost tradeoffs of various approaches to foundation model customization (for example, pre-training, fine-tuning, in-context learning, RAG).
    • Understand the role of agents in multi-step tasks (for example, Agents for Amazon Bedrock).

  • Choose effective prompt engineering techniques.
    • Describe the concepts and constructs of prompt engineering (for example, context, instruction, negative prompts, model latent space).
    • Understand techniques for prompt engineering (for example, chain-of-thought, zero-shot, single-shot, few-shot, prompt templates).
    • Understand the benefits and best practices for prompt engineering (for example, response quality improvement, experimentation, guardrails, discovery, specificity and concision, using multiple comments).
    • Define potential risks and limitations of prompt engineering (for example, exposure, poisoning, hijacking, jailbreaking).

  • Describe the training and fine-tuning process for foundation models.
    • Describe the key elements of training a foundation model (for example, pre-training, fine-tuning, continuous pre-training).
    • Define methods for fine-tuning a foundation model (for example, instruction tuning, adapting models for specific domains, transfer learning, continuous pre-training).
    • Describe how to prepare data to fine-tune a foundation model (for example, data curation, governance, size, labeling, representativeness, reinforcement learning from human feedback [RLHF]).

  • Describe methods to evaluate foundation model performance.
    • Understand approaches to evaluate foundation model performance (for example, human evaluation, benchmark datasets).
    • Identify relevant metrics to assess foundation model performance (for example, Recall-Oriented Understudy for Gisting Evaluation [ROUGE], Bilingual Evaluation Understudy [BLEU], BERTScore).
    • Determine whether a foundation model effectively meets business objectives (for example, productivity, user engagement, task engineering).

Domain 4: Guidelines for Responsible AI

  • Explain the development of AI systems that are responsible.
    • Identify features of responsible AI (for example, bias, fairness, inclusivity, robustness, safety, veracity).
    • Understand how to use tools to identify features of responsible AI (for example, Guardrails for Amazon Bedrock).
    • Understand responsible practices to select a model (for example, environmental considerations, sustainability).
    • Identify legal risks of working with generative AI (for example, intellectual property infringement claims, biased model outputs, loss of customer trust, end user risk, hallucinations).
    • Identify characteristics of datasets (for example, inclusivity, diversity, curated data sources, balanced datasets).
    • Understand effects of bias and variance (for example, effects on demographic groups, inaccuracy, overfitting, underfitting).
    • Describe tools to detect and monitor bias, trustworthiness, and truthfulness (for example, analyzing label quality, human audits, subgroup analysis, Amazon SageMaker Clarify, SageMaker Model Monitor, Amazon Augmented AI [Amazon A2I]).

  • Recognize the importance of transparent and explainable models.
    • Understand the differences between models that are transparent and explainable and models that are not transparent and explainable.
    • Understand the tools to identify transparent and explainable models (for example, Amazon SageMaker Model Cards, open source models, data, licensing).
    • Identify tradeoffs between model safety and transparency (for example, measure interpretability and performance).
    • Understand principles of human-centered design for explainable AI.

Domain 5: Security, Compliance, and Governance for AI Solutions

  • Explain methods to secure AI systems.
    • Identify AWS services and features to secure AI systems (for example, IAM roles, policies, and permissions; encryption; Amazon Macie; AWS PrivateLink; AWS shared responsibility model).
    • Understand the concept of source citation and documenting data origins (for example, data lineage, data cataloging, SageMaker Model Cards).
    • Describe best practices for secure data engineering (for example, assessing data quality, implementing privacy-enhancing technologies, data access control, data integrity).
    • Understand security and privacy considerations for AI systems (for example, application security, threat detection, vulnerability management, infrastructure protection, prompt injection, encryption at rest and in transit).

  • Recognize governance and compliance regulations for AI systems.
    • Identify regulatory compliance standards for AI systems (for example, International Organization for Standardization [ISO], System and Organization Controls [SOC], algorithm accountability laws).
    • Identify AWS services and features to assist with governance and regulation compliance (for example, AWS Config, Amazon Inspector, AWS Audit Manager, AWS Artifact, AWS CloudTrail, AWS Trusted Advisor).
    • Describe data governance strategies (for example, data lifecycles, logging, residency, monitoring, observation, retention).
    • Describe processes to follow governance protocols (for example, policies, review cadence, review strategies, governance frameworks such as the Generative AI Security Scoping Matrix, transparency standards, team training requirements).

The course content above may change at any time without notice in order to better reflect the content of the examination.


 

更多綜合課程
  攝影課程
  • 攝影初級
  • 攝影中級 (風景專題)
  英文課程
  • IPA 拼音:級別 1 2 3 4
  普通話課程
  • 基礎普通話拼音 (免費)
  • 進階普通話拼音
  • 普通話會話:級別 1 2 3
  西班牙語文課程
  • 級別 1 2 3
  中醫課程
  • 濕疹與皮膚敏感病
  • 暗瘡與色斑 | 鼻敏感與感冒
  • 脫髮與白髮 | 從五官看健康
  風水命理課程
  • 紫微斗數:級別 1 2 3
  • 子平八字:級別 1 2 3
  • 八字風水:級別 1 2 3
  • 奇門遁甲:級別 1 2 3